IB Math AA HL Paper 3 Question Bank

1.) The family of curves y = f(x) = (ax3 + bx2 + cx + d)n, where a, b, c, d, and n are constants, is given.

a) Determine the following:

i) the domain and range of the function y = f(x) for any non-negative values of n.
The domain of the function y = f(x) is all real numbers because the polynomial is defined for all real values of x. The range of the function y = f(x) is all non-negative real numbers because the power of the polynomial is non-negative.

ii) Determine the x-intercepts of the function y = f(x) for any non-negative values of n.
To find the x-intercepts of the function, we set y = 0 and solve for x. Therefore, we need to find the roots of the polynomial ax3 + bx2 + cx + d = 0. We can use the factor theorem or the synthetic division to find the roots of the polynomial.

iii) Determine the y-intercept of the function y = f(x) for any non-negative values of n.
The y-intercept of the function y = f(x) is (0,dn) since the function is equal to dn when x = 0.

b) For n = 2, determine the inflection point of the function y = f(x).
For n = 2, the function becomes y = (ax3 + bx2 + cx + d)2. To find the inflection point, we need to find the second derivative of the function, which is:
f”(x) = 6a2x + 2b

Now we need to find the x values where the second derivative is equal to zero.
6a2x + 2b = 0
x = -b/(3a2)

Don't forget to check our Forum

Don't forget to check our Forum

c) Next, Consider the curve, y2 = 2x3 + x

i) Find the derivative of y2 = 2x3 + x
y2 = 2x3 + x
y = √(2x3 + x)
Next, we can take the derivative of this expression using the chain rule. The chain rule states that if we have a function u(x) = f(g(x)), then the derivative of u(x) with respect to x is given by:
du/dx = df/dg * dg/dx

In this case, we have u(x) = sqrt(2x3 + x) and we have to find the derivative of this function with respect to x
du/dx = (1/2)(2x3 + x)(-1/2)(6x2 + 1) = (3x(2x2 + 1))/(2√(2x3 + x))

So the derivative of y = sqrt(2x3 + x) with respect to x is (3x(2x2 + 1))/(2√(2x3 + x))

ii) Hence, find the local minima or maxima of y2 = 2x3 + x
To find the local maxima or minima of y2 = 2x3 + x, we need to find the critical points of the function
y = √(2x3 + x).

A critical point of a function is a point where the derivative of the function is equal to zero or does not exist.

First, we need to find the derivative of y = √(2x3 + x) with respect to x:
y’ = (3x(2x2 + 1))/(2√(2x3 + x))

Next, we need to set y’ equal to zero and solve for x:
(3x(2x2 + 1))/(2√(2x3 + x)) = 0
3x(2x2 + 1) = 0
x = 0

Now, we need to check if x = 0 is a local maximum or minimum. To do this, we need to find the second derivative of y = √(2x3 + x) with respect to x:
y” = (6x(2x2 + 1) – 3(2x2 + 1)(2x))/ (2√(2x3 + x))2
We need to evaluate y” at x = 0, we get
y”(0) = -3/2, which is negative and that means that x = 0 is a local minimum.

So the local minima of y2 = 2x3 + x is (0, 0)

Our Expert Tutors!

Vishnu Sasikumar

St. Stephen’s College

Prasoon Jha

IIM Indore

Rohit Vasav

University of Oxford, England

Dhaval Deshmukh

IB Co-ordinator

Vaishnavi Thakur

Banaras Hindu University

Edit Template

Get access to our free IB resources

IBDP Study Notes

Download Here

IB Comprehensive Syllabus

View Here

IB IA Ideas

get it here

IB CAS Ideas

Explore Here

IB Extended Essay Ideas

Know More

Edit Template